
A Compatibility Error in the Formulation of a 
Popular General Purpose Finite Difference 
Scheme for the Solution of Elliptic Partial 
Differential Equations 

R. P. Hornby* and H. Barrow* 

In this paper, the finite difference formulation used in a popular generalized procedure (1) for the solution 
of turbulent flow heat and mass  transfer problems is shown to contain a compatibility error when the 
scheme is applied to certain geometries. Following a brief description of the procedure in question, a 
corrected form of the finite difference equations is proposed. A heat conduction problem and a laminar 
flow problem, for which theoretical solutions exist, are used to substantiate the modifications. 

I N T R O D U C T I O N  

Complex problems in fluid mechanics and heat and 
mass transfer are frequently solved nowadays by numer- 
ical methods. In the numerical solution of the coupled 
set of partial differential equations pertinent to these 
problems, a popular approach is that using finite differ- 
ence schemes. Each new problem may be programmed 
separately but a.generalization of programmes to solve 
various classes of problems is clearly of much value. In 
this connection the work of Gosman et al. (1) warrants 
special mention. This now familiar procedure of solving 
elliptic equations which describe a wide range of real 
problems has been used extensively by other workers in 
this field (2), (3). The procedure is designed to cater for 
any two-dimensional axisymmetric geometry. Wilson (2) 
and Launder et al. (3), for example, have employed the 
method successfully for the case of fully developed tur- 
bulent flow in straight rectangular ducts. In their study 
of a new turbulence model (4), the present authors have 
also adopted the method proposed by Gosman et al. (1) 
and found the procedure entirely satisfactory for the rec- 
tangular duct geometries considered. However, exten- 
sion of the use of the method to two-dimensional 
geometries in which the metric coefficients are functions 
of the co-ordinates has not met the simple criterion oL 
convergence to a known exact solution as the mesh size 
is decreased. For example, using the method to compute 
the fully developed laminar velocity profile in a circular 
pipe (using polar co-ordinates) will always give a result 
for the centreline velocity which is twice the known exact 
value. This will be the case no matter what mesh size is 
used. It is shown later that in such cases the Gosman et 
al. formulation is incompatible with the original govern- 
ing differential equations, essentially due to the neglect 
of a first-order derivative in the finite difference 
equations. 

It is therefore necessary to briefly retrace some of the 
Gosman et al. analysis and for this purpose the notation 
which has previously been adopted will be used here. A 
modification will then be proposed in order to accom- 
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modate the influence of the co-ordinate system com- 
pletely and finally the corrected finite difference 
equations will be tested using some simple examples. 

THE G O S M A N  et aL P R O C E D U R E  

Using the generalized orthogonal co-ordinate system for 
two-dimensional axisymmetric flow shown in Fig. 1, 
Gosman et al. (1), derive the following 'compact' partial 
differential equation which embodies the conservation 
laws of mass, momentum, and energy as well as the tran- 
sport equations for turbulence quantities: 
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where 11 and 12 are the metric coefficients for the {t and 
{2 co-ordinate directions defined by 

dS1 dS2 
11 = d ~ '  Iz = d¢--~" (2) 

?-"--I 

4  _21 
s 

SE 

--w-', 

Fig. 1. 

axis of s y m m e t r y  

Finite difference grid for the Gosman  et al. (1) formulation 
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S~ and S 2 are the distance co-ordinates along the lines of 
constant ¢2 and ~a respectively, ~b is any dependent var- 
iable which is a function ofthe co-ordinates ¢~ and ¢2, 
is the stream function, and the coefficients ae, b,, c o and 
the source term d, depend on the physical significance of 
q~ and the particular co-ordinate system. 

Equation (1) is integrated over the dotted area shown 
in Fig. 1 giving 

"¢_., .¢ ,wa,  1o-~-.. ~ b ~  -0~.=: q S ~  d~xd~2 

_l.,:.l.,,ol o 1 , . , , -¢, .  1#~.-'1 b ,~  #,~, ] 

+OT=2 b , ~ , "  0¢_, l 

+ 1,12rd , d~l  d~2 = 0 

The first and third integrals are dealt with correctly by 
Gosman et al. The compatibility error occurs in re- 
presenting the second integral in finite difference terms. 
Hence this integral will now be considered in detail. 

Integrating once gives 

t ''~2n i ' ' Ie J (~ 12 r(~(C~q~)i 

~( ,, o )I +~q2 b , ~ , ' ~ ( c ,  4)) de, de= 

.'2"J[b,l~," t =J,~, "-V-, ,o (~  (co,))~ 
b~,12,) ( ~g.1 (c, q~)). } d62 

- (  It ,w ? . " 

Because of the similarity of the terms it is sufficient to 
consider only one. Gosman et al. consider the term 

,¢2° [belzr 

and using eqs. (2) derive 

oS2n 
ld= t 

• $2" 

which is clearly incorrect since lines of constant ~1 or ~2 
are not lines of constant S~ or $2 if the metric coefficients 
I~ or I_, are functions of the co-ordinates 

The correct derivation is 

I a = ] (b,,')~ (%qb) dS2 

Hence whereas Gosman et al. produce the finite differ- 
ence approximation 

l a (b,E + b,p) (rE + ,'p) (ceE~bE -- c,pqSp) (S2N -- S2s) 
2 2 (SIE - Sty) 2 

the correct form is 

2 2 (&E - S1p) 

1 ( (SzNE- S2sE) (S2N--S2s)) 
×5 ~ + 

Note that the difference in the two approximations is 
not just a question of accuracy but one of the fundamen- 
tal representations of the original partial differential 
equation. This point will be illustrated in the examples 
presented later. To conclude this section the detailed 
changes needed to the Gosman et al. formulation in- 
volve the following correcting values of B~.:, Bw, BN and 
B s given on page 110 of the book (1): 

BE (b~v + b~P) ( S2N-S2S-~-S'NE-S2SE ) 
- 16 ("E + "P) ~E-22 ~ 

Bw ,,,,w + b,p) (S2N--S,s+S,Nw--S,.sw) 
= 16 ~ ("w + "p) S~p-2SS~ w 

- 16 ("N + '~) 3-7,. ~ - - ~  

/~ (b,s +,,,~) (sl-S,w+S,sE-S~sw) 
(3) 

EXAMPLES 

Two examples have been chosen to illustrate the incom- 
patibility of the original formulation with respect to the 
governing differential equation for geometries in which 
11 and I: are functions of the co-ordinates. The first 
example is extremely simple but highlights the neglect of 
a first-order derivative in the unmodified procedure. The 
second example is more involved but shows the correc- 
tive effect of the present modifications for a two- 
dimensional problem. 

(a) Fully Developed Laminar Flow in a Circular P i p e  

The momentum equation governing this simple flow is 

~' ( c 3 u )  ,'c3p 
Or " ~  -/.~ c % = 0  (4) 

with u = 0 on r =  a. Here u is the flow velocity, p the 
pressure and FL the fluid viscosity, r is a radial co- 
ordinate measured from the pipe centreline and - a co- 
ordinate along the pipe. The pipe is of radius a. The 
exact solution of eq. (4) with the given boundary condi- 
tions is 

1 @ 
u -  41t ? :  0.2 - a2) (5)  
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It is instructive here to retrace again the original 
Gosman et al. finite difference formulation because then 
the points made in the last section appear crystal clear. 
Integrating eq. (4) over the dotted area of Fig. 1 (taking 
~2 = I" ~1 ~--- O) gives 

. . . .  0 ( al, i . . . .  ," i i  ~ r r. jdrd0-f  I drd0=0 
• w "s 'w "s 

whence 

r - , "  d 0 -  , ~ z d " d 0 = 0  
• w ? r l .  " ~ .~ ..~ 

Using relations (2) the Gosman et al. formulation then 
produces 

I 
"SI~ 

and finally, 

S2N S2p 

(382 In ~('$2 d S l  --  I I ,H 02" - 
S "SI~ 'S2s 

- .s ] 
S2sJ ( S , . -  S,w) 

1 Op (S,E -- Stw)(S2N -- S2s)= 0 
2/~ ?:  

If (for simplicity only) a uniform mesh is assumed 
taken then 

S2N --  S2p = S2p - S2s = ½(S2N - S2s)= Ar 

and the above finite difference equation reduces to 

II N --  2ttV + U s 1 0p 
- 0  

A, "2 It ~32 

which is easily recognized as a conventional finite differ- 
ence approximation to the equation 

02u 1 Op 
- -0 &.2 FL ?z 

which with the same boundary conditions as eq. (4) has 
the solution 

1 ?p 
u = 2-~ ?-- (,.2 _ a 2) 

Hence the Gosman et al. formulation will predict a 
centreline velocity which is twice the exact value. It is easy 
to show that the modifications proposed in the earlier 

Fig. 2. 
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Fig. 3. Temperature distribution along bisector of a quarter cylinder 

section give the following finite difference representation 
of eq. (4), namely, 

I A , ' I  

1 Op rpAr= 0 
1l 0z  

which with a little manipulation gives 

(uN - 2uv + "s) 1 (uN - Us) 1 ap 
A,.2 + rp 2A," ~ 0z 0 

This expression agrees with a conventional finite differ- 
ence approximation to eq. (4). 

(b)  T w o - D i m e n s i o n a l  H e a t  C o n d u c t i o n  

Consider now the problem of finding the temperature 
distribution in a quadrant of an infinitely long cylinder 
of circular cross section (see Fig. 2). The governing equa- 
tion for the temperature is 

I" 2 02T  OT 02T  
O~Z2 + , ' ~ f + ~ = 0  (6) 

and with the boundary conditions shown this has the 
exact solution 

r = sin 20 (7) 

The original Gosman et al. formulation, however, pro- 
duces a solution of 

r2 02 T 0 2 T  

and hence should converge to 

T = sin 20 (8) 

where c~ = (1 + x/17)/2, and not to (7). The modified 
procedure is expected to converge to (7). These conclu- 
sions are amply borne out by reference to Fig. 3. The 
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relative discrepancies between the modified and original 
formulations are most marked for small values of (r/a). 
It is interesting to note that these differences become 
even more pronounced if a full half cylinder is con- 
sidered with T = sin 0 on the circular boundary or if any 
sector of the cylinder is considered with a constant non- 
zero temperature on the circular boundary. 

CONCLUSIONS 

A modification to the popular Gosman et al. (1) formu- 
lation for solving partial differential equations of the 
elliptic class has been proposed which renders the finite 
difference equations so derived compatible with the ori- 
ginal differential equations for all geometries. The com- 
patibility error in the Gosman et al. formulation has 
been shown to exist for all geometries for which either of 
the metric coefficients Ix and 12 are functions of the co- 
ordinates. It is therefore important to note that, for 
example, there is no incompatibility in the Gosman et al. 
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finite difference equations when cartesian co-ordinates 
(l t = 12 = 1) are used. The modifications, once seen, are 
obvious but have been tested successfully for two simple 
problems for which the original formulation was in 
error. 
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